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ABSTRACT
Designing robots for trustworthiness is often justified by its pur-
ported benefits to overall human-robot team performance. However,
there is mixed empirical evidence for how such design approaches
truly support robust human-robot teaming through building trust.
This may be due to the incongruence between interaction-focused
robot trustworthiness designs and the proliferation of trust mod-
eling techniques that are most appropriate for broader teaming
and trusting timescales. We offer an appraisal of current method-
ological and analytical approaches for modeling trust within finer
interaction timescales relative to emergent cognitive properties
of human-robot teams. We then identify challenges that the trust
research community must address in order to produce more precise
frameworks for modeling trust, towards more effective human-
robot interaction design paradigms.

CCS CONCEPTS
• Human-centered computing→ Interaction design theory,
concepts and paradigms.
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1 INTRODUCTION
There are increasingly numerous ways that people and robots can
interact to jointly achieve goals beyond what each could achieve
on their own. This growth in robot interaction capabilities, fueled
by rapid advances in artificial intelligence and machine learning
algorithms, has made it so that human-robot teams (HRTs) are now
thought to be on the horizon [35]. In HRTs, robots not only perform
programmed actions based on preset cues or provide insights to
guide human decision-making, but also independently enact plans
and decisions to varying extents [14].

A big motivation for the development of HRTs is the potential
of robot teammates to adaptively perform tasks in risky situations
in which human teammates’ lives can be endangered by certain
tasks, such as urban search and rescue in debris-littered environ-
ments [4]. However, in other prospective HRT scenarios like joint
combat involving human soldiers and robotic confederates, inef-
fective human-robot teaming can risk disasters that imperil lives
beyond those within the teams involved. Thus, safe and effective
HRTs require robot teammates that can adaptively interact with
human counterparts with respect to changing team task contexts.
Because this has been approached through the use of increasingly
inscrutable underlying robot frameworks [39], designing for trust-
worthiness has become a paramount goal of recent HRT research.
However, the relationship between trust-oriented robot interaction
designs and effective human-robot teaming is unclear.

In this paper, we discuss a disparity between the growing breadth
of research in trustworthy HRT designs and the dearth of theory-
grounded approaches for validating their utility in HRTs. We then
discuss the gaps and challenges in moving towards trust models
based on the team-level cognitive phenomena that arise across
various trust timescales.

2 TRUST & HUMAN-ROBOT TEAMNESS
Trust, or the willingness to rely on another agent amid risks [32],
is crucial in situations where teamwork is essential for achieving
critical goals in risky environments. Lee and See’s [26] seminal
model posits that people’s trust in an automated agent like a robot
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is based on their understanding of its intended purpose, underly-
ing processes, and expected level of performance. There are many
similarities between interpersonal and human-robot trust [30], in-
cluding how people also judge a robot’s trustworthiness in light of
human social norms and expectations, in addition to knowledge of
its reliability [34, 38]. As such, much research over the last three
decades has focused on how a robot’s social interactive capabilities
can adequately inform people of its trustworthiness.

Current approaches to support trust in HRTs includes equipping
robots with humanlike verbal speech patterns, voices, and intona-
tions [6, 46]; the ability to apologize or redirect blame after making
errors [3, 13, 44]; and non-verbal displays of human-like emotion,
including gestures and laughter [36, 37, 40]. There is an abundance
of trust-oriented robot design paradigms and measures that impact
perceptions of robot teammate trustworthiness [13, 22]. However,
it is unclear whether the facilitation of trustworthy perceptions
through prosocial robot interaction abilities truly impacts human-
robot team performance [41]. This ambiguity is reflected in the
observed lack of trustworthiness-oriented human-robot interaction
design paradigms validated with respect to their impacts on team
processes and performance [43].

Interactive team cognition theory [11] posits that team-level
sociocognitive phenomena arise from the succession of individual
interactions taken towards shared goals. These phenomena include
group decision-making processes and social dynamics, many of
which are also related to trust in HRTs [45]. The extent to which
these team-level cognitive properties are distinct from those of in-
dividual human and robot team members (i.e., a team’s “teamness”)
depends on various dimensions of interdependence of these individ-
ual human-robot interactions [10]. Although teamness is a newly-
introduced construct, its performance-related dimensions have
been successfully modeled in HRTs with respect to team speech
patterns [17] and recurrence of physiological signals [18]. There-
fore, adopting teamness-oriented approaches may hold promise
for reappraising the effectiveness of trustworthiness-oriented HRT
interaction designs [8].

3 ACCOUNTING FOR TIMESCALES IN
HUMAN-ROBOT TEAM TRUST MODELS

Modeling trust with respect to teamness requires identifying trust
phenomena and the timescales over which they manifest to inform
precise trust-and-performance models. For instance, people use
their knowledge of these informational dimensions in three stages
[26]: at first, people rely on faith-based assumptions regarding gen-
eral system reliability; as their interaction histories accrue with a
robot, trusting decisions become based on situational dependabil-
ity, and then on the immediate predictability. Depending on how
interactions take place sequentially, people may rely on analytical
perceptions of a robot’s overall reliability more than social percep-
tions, or vice versa [2, 5, 23]. Chiou and Lee’s [5] relational model
identifies three timescales at which trust may manifest distinctly
depending on sequences of human-robot interactions: interactions,
which occur over milliseconds to a few seconds and span minute
information exchanges or decisions; situations, which comprise a

finite set of interactions corresponding to immediate goals, span-
ning minutes to a few hours; and relationships, which comprise
successive situations spanning hours and beyond.

Interactive team cognitive phenomena are best observed in the
context of individual interactions [11, 20]. However, the various
measures have been used to model trust over time are often col-
lected and analyzed only with respect to situation-level timescales.
Questionnaires are the most prevalent in the recent literature [25],
which meta-analyses support the validity of for measuring overall
trends in trusting perceptions between situation-level timescales
of interaction [22, 41]. However, questionnaires are limited by in-
herent logistical limitations and validity issues associated with
repeated administrations between only a few interactions [42, ch.
2]. There have been recent attempts to use questionnaires for mod-
eling interaction-level trust dynamics by administering single-item
abbreviations of established trust scales after individual interactions
with a robot (e.g., [47]). However, caution should be exercised when
using truncated surveys, as they are rarely validated with respect
to broader trust questionnaires, in addition to having general issues
of internal consistency reliability [16].

Behavioral indicators of trust are often considered as context-
sensitive alternatives to questionnaire-based methods [25]. Com-
monly used examples include reliance upon robot teammates to per-
form a task or compliance with a robot teammate recommendation
[33]. An oft-cited benefit for using behavioral measures is that they
can be gathered unobtrusively and repeatedly over sustained peri-
ods [10]; nonetheless, they are still typically reported as situation-
level aggregates, e.g., [9, 12, 21]. This may be due to the limited
use of dynamically-sensitive analytical techniques in the HRT liter-
ature, which recent empirical models of trust at interaction-level
timescales have employed, e.g., [15, 17, 18].

In sum, there exist several behavioral and questionnaire-based
trust measures that can be gathered at interaction-level timescales,
but an overreliance on aggregation analytical approaches may have
prevented more precise understanding of how trusted robots sup-
port teaming through interactions. This lag has coincided with
similar methodological gaps in dynamically modeling other team
cognitive phenomena, such as team workload [19] and situation
awareness [29]. However, there are aremany candidatemethodolog-
ical frameworks compatible with current measurement techniques
used in the trust literature, with some already in limited use. These
include dynamical systems analysis [1, 20, 48], semantic and senti-
ment analyses [28], and the use of machine learning models capable
of handling time-series data [27]. More widespread appreciation
for and usage of similar timescale-flexible methods like these is
needed towards developing more robust trust measurements, and,
subsequently, more meaningful HRT interaction designs.

4 CHALLENGES & FUTURE DIRECTIONS FOR
TIMESCALE-FLEXIBLE TRUST MODELS

We acknowledge some theoretical andmethodological challenges in
moving towardsHRT trustmodels at the interaction-level timescales.
For one, although Chiou and Lee [5] specify the durations that inter-
action, situation, and relationship trusting timescales typically span,
the boundaries between these timescales are not clearly defined.
For example, an HRT under stress may send a quick succession of
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messages between a person and their robot teammate, displaying
drastic shifts in trust dynamics not commonly observed in routine
team situations, e.g., [7]. It is possible that other teaming frame-
works, such as temporal coordination phases [31], may be more
informative than durations or raw action counts for distinguishing
which situations certain interactions belong to, and so on. However,
in larger HRTs, trust within subgroups may overlap and unfold
simultaneously, making unobtrusive measurements hard to inter-
pret in real-time for robot teammates to use effectively. Empirical
demonstrations of trust models that are scale-flexible with respect
to time and group size, e.g., [24] are still forthcoming in the litera-
ture and may be useful once formalized.

More broadly, analyzing trust at interaction-level timescales may
involve large corpora of data, which can be resource-intensive and
difficult to manually perform quality control over. This may require
certain levels of aggregation and limit the sensitivity of interaction-
level analytical techniques. Ultimately, and somewhat ironically,
big data from interaction-level trust models may require the use
of inscrutable machine learning models and dissuade HRT trust
researchers from investigating trust at scale. Research community-
driven efforts will be needed to innovate solutions for investigating
the mechanistic complexities of trust and HRT interactions.

5 CONCLUSION
Trust and team processes unfold and are observable in the various
timescales at which human-robot teams interact. As robot team-
mates become increasingly central in risk-prone work environ-
ments, more nuanced HRT design paradigms require more precise
approaches to studying trust and teamness dynamics over these
teaming timescales. Achieving this precision entails reexamining
current trust measurement methods and analysis techniques while
answering practical questions about adapting the existing HRT
trust research traditions. Recent empirical studies that demonstrate
the utility of dynamic and contextual trust models can serve as
a starting point toward this endeavor, and are ripe for discussion
within the trust research community.
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