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ABSTRACT
Modeling humans and robots together as a team can alleviate
many of the challenges of human supervisory control, however,
the construct suffers from several technological limitations. In this
paper, we argue that mutual adaptation through bi-directional
influence is a necessary component of all members of a team and
is required for true human-automation teaming to exist.
Bi-directional influences require that all members of a team
possess the ability to change as a result of team interaction
(plasticity) and be capable of detecting changes in others and the
environment and dynamically adapting as a result of them
(responsiveness). Trust at the team level and an understanding of
trust dynamics may provide a promising way forward for imbuing
these technologies with the capability of mutual adaptation.
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1 Introduction
Over the past 30 years, the idea that human interaction with
increasingly autonomous automation technologies could be
designed for and classified as “teaming” has grown in popularity
[1]. For simplicity, we will use the term automation to refer to any
embodied or disembodied increasingly autonomous automation,
AI, or technology capable of advanced information processing,
decision-making, and independent action. A key distinction
between Human-Automation Teaming (HAT) and other
interaction paradigms is that humans and technology interact as

peers rather than in hierarchies of monitors/supervisors and
subordinates [2]. Modeling humans and robots together as a team
can alleviate many of the challenges of human supervisory
control, such as poor vigilance, automation bias, skill degradation,
and out-of-the-loop phenomena [1].

Despite the conceptual benefits, achieving HAT has
suffered from many of the same challenges described by the “AI
Effect”, where the complexity of achieving true interdependent
and resilient HAT is often underestimated [3] [4]. This paper
leverages ideas from Interactive Team Cognition Theory,
Relational Trust, and Trust Dynamics to discuss a major challenge
overlooked in the design of technology for HAT [5] [6] [7]. In this
paper, we argue that for technology to achieve true,
interdependent teaming, all members must be capable of dynamic
mutual adaptation based on their interactions with one another,
and that trust at the team level is a fundamental component that
drives adaptation over time.

Dynamic mutual adaptation requires bi-directional
influence between all members of a team, where influence refers
to the mutual impact that team members have on each other’s
thoughts, behaviors and performance within a dynamic team [8].
Two technological limitations of bi-directional influence have
thus far precluded automation from teaming. The first is
“plasticity”, which refers to technology's ability to change as a
result of evolving team interaction. The second is
“responsiveness”, which refers to the ability to detect changes in
the environment and individuals and adapt one's goals, intentions,
interaction strategies, and cognitive processes to better meet the
needs of the team or influence it. Plasticity is therefore changes
directed by external sources, while responsiveness refers to
changes instigated by internal direction as a result of information
collected. Together, these two concepts form the necessary
components for bi-directional influence.

2 Team Cognition
Team cognition, or the system-level cognitive processes
originating from interactions of individuals toward common goals,
distinguishes teams from other groups [9]. Similar to streams of
inner monologue and conscious thought that occur in the heads of
individuals, Interactive Team Cognition (ITC) theory posits that
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team cognition is the streams of bi-directional, dynamic
interaction that occurs between the heads of team members over
time [5]. When teams interact to overcome challenges, situations,
or events, they share information, knowledge, and experiences;
leverage the skills, and strengths of individuals while seeking to
compensate for weaknesses; and achieve resilience through
dynamic interactions [5] [10] [11]. Team cognition can be
observed at the team level in activities such as planning,
reasoning, and problem-solving.

Taking the ideas of ITC a step further, we posit that the
interaction over time changes the team, at the team and individual
levels. During these interactions, members exert bi-directional
influence, iteratively changing the individual and collective states
of the team as they progress toward achieving the team's goal, as
shown in Figure 1a [12]. That is, the team, and the individuals that
comprise it, demonstrate both plasticity and responsiveness. It is
not enough for individuals to engage with one another. A group of
individuals who do not influence one another, and change over
time would not be classified as a team. Furthermore, it is possible
that in a group of individuals, some members form a team, while
others do not (cf., “teamness”;) [9]. These distinctions may seem
obvious for human teams, but become less clear when considering
the limitations of automation.

3 Automation Rigidity
To date, the design of automation has focused on taskwork by
creating independent and reliable technology capable of learning
and adapting to tasks and contexts, and extending its capabilities
as changing task contexts require achieving dynamic goals(i.e.,
graceful extensibility) [11]. However, the research efforts that
have been made at advancing automation capable of learning and
adapting to the humans that they interact with have not been
widely adopted, resulting in a majority of HAT research that uses
rigid automation. Rigidity, the opposite of plasticity, specifically
refers to the inability of automation to change as a result of
interactions with others over time. Rigidity also implies that
automation will not instigate internal changes in response to
information acquired through interaction (responsiveness).

The effects of rigid automation on team cognition are
demonstrated in Figure 1. In Figure 1a, we see three human
teammates interacting over time. As a result of this interaction,
each individual's state and the state of the team evolves. This
evolution over time as a result of interaction is the team's evolving
cognition. Alternatively, in Figure 1b, two humans form a team in
which the individual states and the collective state of the team
evolve, but because the automation is rigid, its state does not
change. Its goals, intentions, computational processes, and
strategies remain relatively static. Downstream, the human team
possesses an evolved understanding based on a history of
interaction that allows for emergent team cognition, but when
humans are paired with automation they must adjust their

interactions to the automation because it does not evolve with
them.

Figure 1: Comparison of two teams within an environment
working towards a goal. Figure 1a is a team of three humans.
Each member is labeled A, B, and C representing different
sets of knowledge, skills, and experience. The team state is
denoted by the letter S and is shown to evolve as a result of
team interactions. Individuals are also shown to change as a
result of the interaction as depicted in their numbers
changing. Figure 1b depicts a two-person team and an
automation where the humans are changing (in the same
manner as 1a) but the automation remains in its original state.

4 A Focus on Team Process
The limitations of automation are evident in the extant body of
research in the human-automation/ human-robot interaction
literature. One example is automation transparency, which seeks
to overcome the challenges of interacting with complex
technology by attempting to make information about its processes
sufficiently observable [13] [14]. Transparency may be beneficial
for technology that is relatively simple and engaged in a
supervisory manner, however, it has been criticized in HAT
contexts. This is because the dominant black-box approaches to
improving the capabilities of automation have made the internal
workings and processes increasingly inscrutable [15].
Furthermore, novel challenges and rapidly unfolding contexts
create an exponential number of behavioral contingencies.
Making all of these internal workings observable results in a
bottleneck in terms of the workload required to understand them
at any given moment. Designing for transparency can create rigid
interactions with technology where the only solution is to provide
more and more information [16] [17].

Similar to human teams, arguments have been made that
the information intended to be conveyed through transparency,
should instead be distributed throughout team interactions [17].
As team interactions occur over time, a history is developed
within the team about the automation that serves to supplant the
need for immediate transparency of all of its internal workings.
To support teammates’ history-based knowledge of its
trustworthiness through teaming interactions, automation must
also be capable of bi-directional influence. Automation capable of
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bi-directional influence in this example could detect instances
where the team needs to understand information about its internal
processes and dynamically instigate team interaction that
distributes that information. These are not hard coded events, but
dynamic activities that occur within the ongoing dialect of team
interaction. They become a component of the team's cognition.

While mutual adaptation through bi-directional
influence is required for HAT, the exact means by which they can
occur is still lacking. Team trust and an understanding of trust
dynamics may provide a way forward for achieving bi-directional
influence.

4 AWay Forward:
Trust dynamics refers to the continuous and evolving nature of
trust, including the momentary fluctuations, changes, and
developments of trust over time, as influenced by various factors
and interactions [18] [19]. At the team level, members' trust in a
team's ability to achieve the team's goal acts as a heuristic, or
shorthand indicator for members to adapt their behavior or
instigate team interaction. For automation to have effective
bi-directional influence, it must be able to perceive, predict, and
understand how different actors’ trust changes in time and across
contexts. Understanding trust dynamics creates a way to signal to
automation when it should adapt goals, intentions or interaction
strategies to be more consistent with team expectations and needs
or dynamically engage in the trust calibration process through the
use of strategies for trust repair or dampening [6] [20]. Several
methods for modeling trust dynamics and using them to create
trust-aware automation have already been demonstrated with
promising results [21] [22].

Furthermore, in HATs, it is important to note that
humans will not be infallible, and the technology may not be
required to adapt to or adhere to the human’s expectations.
Instances may arise wherein a non-human agent is required to
influence a human towards more realistic or advantageous goals
or expectations. An understanding of trust dynamics makes it
possible for technology to, in turn, influence human counterparts
in ways similar to human-human teams.

5 Conclusion
A fundamental component of teams is that they possess team
cognition through interaction. The activity of team cognition
occurs over time and results in mutual adaptation at the individual
and team level. Mutual adaptation occurs through bi-directional
influences exerted between team members. Bi-directional
influences require that all members of a team possess the ability to
change as a result of team interaction (plasticity) and be capable
of detecting changes in others and the environment and
dynamically adapting as a result of them (responsiveness). For
HAT to exist, technology must be capable of both plasticity and

responsiveness. To date, HAT engineering and research have yet
to address these issues fundamental to teaming. Leveraging the
growing body of knowledge on trust dynamics, automation may
use this information as an input to sense and instigate changes
dynamically with the team as they evolve through interaction.
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