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ABSTRACT 

Over the years, trust in Human-Robot Interaction (HRI) has been 
extensively analyzed by researchers, not just as a static measure but 
also as a dynamic process. This paper proposes an approach using 
Recurrent Neural Networks (RNNs) to predict the dynamics of trust 
in Human-Robot interactions. To apply RNNs in HRI trust 
prediction, we propose segmenting time series into smaller 
windows and using Long Short-Term Memory (LSTM) cells to 
account for the temporal dynamics of trust. 
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1 Measurement of Trust in the Context of HRI 
Human-Robot Interaction (HRI) extends beyond 

teleoperation, representing a dynamic field where robotics 
technology is designed to interact with humans in a range from 
simple responses to precise command execution and complex, 
semi- autonomous tasks [17]. This evolution in HRI highlights the 
significance of robots’ autonomous decision-making, requiring 
interfaces that are efficient and intuitive for human users. As robots 
gain autonomy, the interaction naturally evolves into a partnership 
model, where trust becomes pivotal [5]. Establishing trust in HRI 
is crucial for seamless cooperation, ensuring that humans can rely 
on robots to perform tasks accurately and safely, thereby 
facilitating more integrated and productive human-robot 
collaborations.  

Trust in HRI is defined in terms of reliance as "the 
attitude that an agent will help achieve an individual’s goals in a 
situation characterized by uncertainty and vulnerability" [8, p. 54]. 
The factors influencing this metric of trust include reliability [19], 
performance [16], and predictability [9], aligning with Lee and 
See’s performance attribute of automation [8].  

Affective- and cognitive based-trust have been identified 
as the foundation for interpersonal cooperation which extends to 
HRI [12]. Affective-based trust is rooted in the interpersonal 
aspects of the trusting attitude, related to reciprocal care and 
concern [12], and represents the emotional dimension of trust [2]. 
In contrast, cognitive-based trust is based on an individual’s beliefs 
in another’s reliability and dependability [12]. Cognitive trust, 
therefore, focuses on reliance as well as the performance, process, 

and ability attributes of trust in automation identified by Lee and 
See [8]. This paper primarily addresses cognitive trust.  

Various methodologies have been developed to measure 
trust and trust dynamics. Moving beyond treating measurements of 
trust as a static "snapshot" at the end of an experiment, trust has 
been conceptualized and demonstrated as a variable that fluctuates 
over time, influenced by various factors including both positive and 
negative experiences [14, 18, 20]. Trust has been measured and 
validated in real-time situations, incorporating both subjective and 
objective assessments, using a layered dynamic model [3, 4] and a 
moving window procedure [22]. 

2 Related Studies 

Recent studies, such as those by Li and colleagues [10], 
have utilized machine learning models to predict trust by analyzing 
communication content and flow, as well as conversational cues 
within people’s conversations, combined with audio and text data. 
In this study, a random forest model that served as a partial 
mediator for predicting trust was built. However, their model did 
not account for the influence of time series data on trust detection. 
Given that trust is measured as a dynamic variable [20], machine 
learning models capable of processing time series, such as recurrent 
neural networks (RNNs), should be able to predict trust.  

In this case, an RNN could be used to measure trust by 
segmenting the event and incorporating environmental information 
as input. It is anticipated that the RNN would output the 
categorization of trust/distrust or even quantify the level of change 
in trust/distrust. The trust events in HRI have an advantage with 
this strategy, as data from autonomous agents can be collected as 
one source of the environmental dataset.  

RNNs have been widely used in natural language 
processing due to their ability to consider the sequence of words in 
a sentence [13]. This capability can be applied to analyzing 
sequences of events as well. Krishnan and colleagues [6] utilized 
an RNN to predict whether a URL is suspicious based on queries 
and sequential datasets. RNNs are also effective in predicting 
human behaviors; Li and colleagues [11] developed an RNN tree 
that categorizes various types of human actions and can adapt to 
new action classes. [15] used sequential actions as dynamic data for 
modeling and predicting human sequential design decisions. 
Additionally, RNNs are useful for cleaning high-noise datasets and 
categorizing different signals. Kuanar and colleagues [7] employed 
an RNN to process EEG data, which is inherently noisy, to produce 
four-class predictions. However, this discussion transcends the 
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simple increasing or decreasing of trust levels to focus instead on 
the dynamics of trust—its increase or decrease over time. Future 
research might explore the dynamics of distrust in comparison to 
trust.  

To predict trust in real-time, we need to segment the time 
series into smaller windows. For instance, consider a scenario 
where three teammates, including one robotic teammate, 
collaborate to photograph specific targets. Here, the time period 
associated with each target can constitute a segment. In a specific 
sequence, the robotic teammate communicates task-related 
information, sending a message to teammate A, who then responds. 
This prompts the participant to inquire further about the task. The 
tasks assigned to the robotic teammate, the message they send, 
teammate A’s response, and the participant’s question all follow a 
sequence of events, and any alteration in this sequence could 
impact the level of trust.  

Given that trust propensity is important for inspire trust 
[1], people’s initial level of trust needs to be considered. Therefore, 
the use of Long Short-Term Memory (LSTM; [21]) seems well-
suited for RNN cells in this context as LSTM cells contain self-
connected memory cells that can store information even  at the 
beginning of the mission. Starting with a single LSTM layer can 
serve as a baseline to gauge how the model predicts trust. The 
system will then incorporate data from various events that have 
been previously defined; thus, the input data will be the values of 
the events from different segments, ensuring the model's simplicity. 
Nonetheless, exploring the potential of adding second or third 
layers may enhance trust prediction. 

The challenge that remains with this approach is the 
ability to differentiate event types from the data collected in the 
environment, such as distinguishing between changes in the robotic 
teammates’ behavior and the robotic teammates’ response. 

3 Conclusion 

The research conducted to date demonstrates that RNNs 
can process sequential data as input and generate categorical data 
as output. This aligns with the objective of this paper: to input a 
series of actions within the system and output the changes in trust 
level, either as an increase or decrease. The binary categorical 
output will benefit future studies on dynamic measurements of trust. 
Practically, predicting trust can lead to faster responses for trust 
repair, thereby enhancing team performance. It is important to note 
that this RNN model is designed solely as a classifier for the 
increase or decrease of trust levels, not for analyzing the level of 
trust. Future research should aim to evolve this model into a more 
predictive tool to test if it can detect the degree of change in trust. 
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